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Abstract

This paper discusses the reliability of operation of an on-line computer

system with a spare processor., described by a semi-Markov process model.

Analytical solutions are obtained by using computer-aided algebraic manipula-

tion techniques. The main purpose of the paper is to demonstrate that the

difficulties of obtaining analytic solutions to Markov processes by standard

techniques can be considerably reduced by the application of algebraic sym-

bol manipulation languages. To the author's knowledge, the results of the

reliability analysis are also new.
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I. INMDUCTION

Consider an on-line computer system, such as one used to control newspaper

production. To increase reliability of operation, the main processor is

usually backed up by an identical unit. Without such a spare processor, a

failure of the main processor can cause missing lulbication deadlines, result-

ing in revenue loss from advertisements. The reliability of operation can

be enhanced by periodic maintenance of the processors. We assume that the

processors fail only when in operation. When maintenance work is started on

the active processor, the spare processor is put into operation. If the active

processor does not -fail till the-end of the maintenance work, then the processor

being maintained is set aside as the spare unit. If the active processor

fails, then the processor being maintained or the spare unit is inmediately

put into operation. If a processor fails, then repair work is started on it

immediately. If both processors fail, then the first to fail is repaired

first.

This system can be characterized by four states listed in Table 1.

Transitions between pairs of states occur at randomly distributed instants of

time. Therefore, it is possible to describe the system by a semi-Marlov

process. The allowable transitions between pairs of states are shown in Fig. 1.

II. S4II-MAWV PROCESS MIDEL

Let t. denote the time spent by the process in state i before a trans-

ition to same other state occurs. We define the waiting-time distribution in
S

state i as

wit) P[t i t]
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and the corresponding density function and mean by wi(t) and wi, respectively.

Let the failure-time, repair-time and maintenance-time distribution be [2,3]

P[Failure-time<t] -1 - exp(-Lt) P

P[Repair-tikwt] a 1 - exp(-Gt) ,

and P[Maintenance-time<t] 1 - exp(-Ht)

respectively for t>O and zero otherwise. The maintenance schedule is assumed

to be periodic with period To and the following distribution

P(Start of Maintenance < t] = u(t - T0 ) ,

where u is the unit-step function. The waiting-time distribution for each state

can now be computed in a straightforward manner. As an example let us compute

W1 (t). Letting F denote the failure-time, we have

P[t I > t] f P[min(T0 ,F) > t]

= P[T0 > t]P[F >.t] ,

f [1 - u(t-To)]exp(-Lt)

Wl(t) = 1 - P[t 1 > t]

= 1 - [I - u(t-T0) ]exp (-Lt)

dw1 (t)
Hence, wl(t) = t - [1 - u(t-To)]L exp(-Lt) + 6(t-To)exp(-Lt)

and Wi=[l-exp(-LT0)]/L. Figure 2 shows W1(t) as a function of t. The waiting-

time distributions, their density functions and means are listed in Table 2.

Let pij (t) denote the conditional probability density function of a transition

to state j in [t,t+A] given that the process entered state i at time zero and

the next transition from state i occurs in [t,t+a] for sufficiently small 4>0.

Then the probability density function of a transition from state i to state j
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Table 1

STATE DESCRIPTIlON TABLE

State Label

One active processor with a spare 1

Both processors down' 2

One active processor with the other in maintenance 3

One active processor with no spare 4

TabLe 2

WITIINE-TIME DIS1'RIBUMINS

State Distribution Density Mean

1 1- [1-u(t-T )]ex(-Lt) fl-u(t-T0 )]L exp(-Lt) [l-exp(LT0 ) I/L

+tS(t-T0 )exp(-Lt)

2 1-exp(-Gt) G exp(-Gt) 1/G

3 1- exp( (L+H) t) (L.H) exp( (L.H) t) l/(L+H)

44 1- exp(-(L+G) t) (L.G) exp(-(L+G) t) l/ (L.G)
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4 Figure 1

ST!ATE TRANSITION DIAGRAM

W1(t)

Figure 2

WAITING-TIME DISTRIKJTION FOR STATE 1
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after waiting t units of time in state i is given by

C. kt) - P. Mt.wi.t)"

J I.
The core matrix of a semi-Markv process is defined as C(t)=[c ij (t)] and it

provides a complete probabilistic description of the process [1]. The core

matrix of this process is shown in Table 3.

Let e ij (t)A denote the probability that the process will enter state j

in [t,t+A] given that it entered state i at time zero and let the entry matrix

be E(t)=[e. (t)]. Then
E(s) = [I - C(s)] -

where I is the identity matrix and E(s) and C(s) are Laplace transforms of E(t)

and C(t) respectively (see [1]). The matrix C(s) is shown in Table 4. Define

E = lim[sE(s)]

For a monodesmic process, such as the one discussed here, the rows of E are

identical 11]. Let ej denote the jth element of any row of E. Then the limit-

ing interval transition probability for state j, denoted by hj, is given by

Suppose the process has been operating unobserved for a long period of time.

Then h. is the probability of the event that the process will be in state j

when observed next. The state occupancy statistics can also be obtained from

E(s). The details of this and mean first-passage time computations can be

found in [1].

The next section shows how analytic expressions can be obtained for h,

state occupancy statistics, and mean first-passage times by using computer-aided

-. , .. .'. / . - -.. . - , - ...-.....
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Table 3

coRE MAJRIX

*12 3 4

1 0 0 6(t-T0 )ezcp(-Lt) [u(t)-u(t-T0 )]L exp(-Lt)

*2 0 0 0 G exp(-Gt)

3 H exp (- (L+H) t) 0 0 L exp (- (L+H) t)r

4 G exp(-(L+G)t) L exp(-(L4G)t) 0 0

4r

Table 4

LAPLACE TANSFORM OF COlRE MATRIX

12 3 4

1 0 0 exp(-(S+L)T0 ) L(l-exp(-(S+L)T 0 )/(S+L)

2 0 0 0 G/ (S+G)

3 H/ (S+L+H) 0 0 L/ (S+L+H)

4 G/ (S+L+G) L/ (S+L.G) 0 0

10
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algebraic manipulation techniques. This material was generated interactively,

by using the symbol manipulation language called MACSYMA available at the MIT

mathematics laboratory, accessed via the ARPA computer camunications net-

work.

III. ANALYTIC SOLUTIONS VIA MACSYMA

The original computer outputs did not have any comments. The comments

imbedded between the pairs of characters "/*" and "*/" are added to explain

the procedure.

/* TIME:TRUE PRINTS CPU TIME USED IN EACH STEP IN MILLISECONDS: /

(C) TIME:TRUE $
TIME= 8 NSEC.
/* WAIT=ROW VECTOR OF MEAN WAITING TIMES:
(C2)

WAIT:MATRIX ([ (1-%E" (-LTO) )/1, l/G, 1/(L+H), 1/(L+G) ] );•

TIME= 115 MSEC.
[ -LTO ]

(D2) [1 -%E 1 1 1 ]
----------- ------ ----- I

[ L G L+H L+G]

/4 SCORE=LAPLACE TRANSFORM OF THE CORE MATRIX = C(S). 4/
/* SCORE IS ENTERED ROW BY ROWJ EACH ROW ENCLOSED IN [1. /1
/4 %E DENOTES THE EXPONENTIAL "" and DENOTES EXPONENTIATION: 4/

(03)
SCORE:MATRIX

([0,0,%E ^ (-)) (S+L)*TO), CL/(S+l) )* (1-%E (- CS+L)*I'O)) )], '

[0,0,0,G/ (S+G)],
[H/(S+L+H) ,O,O,L/(S+L+H)],
[G/(S+L+G) ,//L/(S+L+G),O,O]);

TIME- 244 MSEC.

6"
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[ -(S L)TO ]
[ -(S L) TO L (- %E
[ 0 0 %E ]

-. [ S+L ]
[ ]
[ G ]
[ 0 0 0 ]

(D3) [ S+G ][ ]
[ H L ]

------ 0 0 -----
[S + 1 +H S + L + H[ ]
[ G L ]

- - - -- - - - - -0 0]
[S+L+G S+ L.G ]

/* SENTRY=E(S)=INVERSE OF (IDENTITY-SCORE). ^ DENOTES NONCOMMUTATIVE 4/

/* EXPONENTIATION. INVERSE OF MATR IX=NATRIX ^^-: /

(C4)

SENTRY: (IDENT(4)-SCORE)""-I $

TIME= 56426 MSEC.
/* TEMPO=S*FIRST ROW OF SENTRY.RATSIMP IS AN OPERATOR USED FOR SIMPLIFICATION: '/
(CS) TEMPO:RATSIMP(S*ROW(SENTRY,1)) $

TIME= 128761 MSEC.
/* LMT=LIMIT OF TEMPO WHEN S-->O: 4/

(C6) LMT:LIMIT(TEMPO,S,0) $

LIMIT FASL DSK MACSYM BEING LOADED
LOADING DONE
TIME= 2251 MSEC.

/* L?4TDSTwROW VECTOR OF STEADY STATE PROBABILITY DISTRIBUTION: 4/

(C7) IMTDST:RATSIMP(LMT*WAIT) $

TIME= 31529 MSEC.

(C8) LM'rDST [1,I] ;

TIME- 6 MSEC.

. . .,t . -, .• "_ _ "_
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(D8)

2 2 L TO 2 2
(G L +G H) %E -G L-G H

3 2 2 2 1 TO 2 2
(L + (H +G)L +(G H +G)L +G H)%E -HL -G HL-G H

(C 9)

LMTDST[1 ,2];

TIME= 5 MSEC.

L2

(D9)-- - - - - -
2 2

L +G L +G

(CIO)LMTDST[1,3];

TIME= 5 MSEC.
(Dl 0)

2
G L

3 2 2 2 L TO 2 2
(L + (H +G) L + (GH +G) L +G H) %E -HL -GH L-G H

0 (Cil)

LMTDST[1,4J;

TIME= 5 MSEC.
G L

(Dii)-- - - - - -
2 2
L +G L +G

/* CHECK ON THE SUM OF THE PROBABILITIES OF TJJTDST: 4

(C12)

RATS IMP (LMTDST. TRANSPOSE((1 4,14]));

TIME= 6407 MSEC.
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(D12) 1

/* TOCUP[2.,2]=-MEAN NO. OF TIMES STATE 2 IS VISITED IN [0, T] STARTING IN */

/* STATE 1 AT TIME ZERO. SOCUP[1,2]-LAPLACE TRANSFORM OF TOCUP[1,2]: /

(c19)
SOCUP[1,2] :RATSIMP(SENTRY[1,2]/S) $

TIME= 366 MSEC.
/* ILT OPERATOR COMPUTES THE INVERSE LAPLACE TRANSFORM:
(C20) TOCUP[1,2]:ILT(SOCUP[1,2],S,T) $

LAPLAC FASL DSK MACSYM BEING LOADED
LOADING DONE
/* INFORMATION REQUESTED BY THE LAPLACE TRANSFORM ROUTINE:
IS G L POSITIVE, NEGATIVE OR ZERO?
/* ANSWER ENTERED FROM THE TERMINAL: */
POSITIVE;
TIME= 10625 MSEC.

/* COMPUTE TOCUP[1,2] FOR L=1, G=1O, TO=1/1O AND H=lO:

(C21) %,L=1,G=10,TO=I/10,H-10;

TIME= 910 MSEC.
- 11 T 89 SINH(SQRT(10) T) 109 COSH(SQRT(10) T) 10 T

(D21) %E (------- ------------- --------------- )
12321 SQRT(10) 12321 111

109

12321

/* TOCUP[1,,2] HAS A LINEAR TERM IN T WHICH WILL BE DOMINANT FOR LARGE 4/

/* VALUES OF T. PART FUNCTION IS USED TO SELECT ANY PART OF AN */
/4 EXPRESSION. THE LINEAR TERM IN T IS: */
(C22)

PART (TOCUP [1,2] ,2);

TIME= 76 MSEC.

2
GL T

2 2
L +GL G

"* . . . " S . .. . . . .. . . , . .. .. . . . . .. . . . . . . . . .- . . .. ... . . . -
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IV. DISCUSSION OF TIE RESULTS

Tw important parameters for estimating the reliability of operation of

this system are hl and h 2 , respectively the probabilities of being operational

with a spare unit and completely shut-down, in the steady state. Let

D=(L+H)(L 2 +GL+G 2). Then

2 2 2h= [(L+H)(exp(LTO)-l)]/[D exp(LTO) -H(L +GL+G )] , (1)

h = L2/(L2 +GL+G2). (2)

Also

h3 =G 2 L/[D exp(LT0 )-H(L 2 +GL+G2 (3)

and h4 = GL/(L 2 +GL+G 2) (4)

During the interactive session, we verified that hl+h2 +h3 +h4 =l as it should be.

As a further check on our results we consider the system without any preventive

maintenance work. By letting To go to infinity we eliminate all maintenance

work in the future except that starting at time zero. The corresponding state

transition diagram is shown in Fig. 3. In this case we have

h. G2 (L+H)/D,

h 2 -L 2 /(L2 L G 2 ),-

h3 =0,

and h4  GL/(L 2 +GL+G 2)

____'2

-. _ 2



Page 12

Now letting H go to infinity we eliminate state 3 from our process and obtain

ha. = G2 /CL2 +GL+G 2), (5)

2 2 2
h L M( +GL+G ),(6)

0 , (7)
and h4  GL/(L2+GL+G2 1 )8

:he steady state distribution for the resulting three state process can be

"computed by hand and they agree with equations (5), (6) and (8).

*4 Now let us consider the effect of maintenance on h1 . We assume that when

maintenance is done H is a constant and the reciprocal of the average failure-

time L is a function of T0 , i.e., L=F(T 0 ). F is assumed to be a nondecreasing

function with F(0)=L0y0 and F(-)=LI<. Without maintenance, hI is computed from

Equation (5) to be

K, = G2/ (L2+GL+G 2 ) (9)

For a fair comparison, N, should be compared with hI +h3 when maintenance is

present. Using equations (1) and (3) we have

i|. * • !2 TO 2 1 T 2
h1  + h3  = G(F(TO) +GF(TO) ) (10)

* 3
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, Since F is assumed to be a nondecreasing function, F(T0)LF(-)=L1 and hence from

equation (9) and equation (10) we have

i.e., maintenance increases the probability of the system being operational

in the steady state.

Next let us consider a state-occupancy statistic of relevance to the

reliability of the system. Let N12(T) denote the average number of times

the process visits state 2 in the time interval [0,T], starting in state 1

at time zero. Then for large values of T

l 2 (T) = GL2T/(L2+GL+G2) (11)

Let Q(L) = GL /(L 2.GL+G 2 ) = Gh2

Then it is easy to verify that Q(O)=0, Q(-)=G, dQ/dL>0 for all G,L>0 and

! d 2 3  L2

I- > 0 for G > L2(L+3G)
dL

and 2
< 0 for < L2(L+3G)

We can sketch Q(L) as a function of L which is shown in Fig. 4. To minimize

N12 (T) we have to minimize Q(L) and this can be done by reducing T0 .

Next let us consider the average first-passage times between pairs of

states. Let Tij denote the average first-passage time from state i to state

j. Then we define T21 as the recovery-time of the system from complete breakdown

in state 2 to fully operational in state 1. The unknown quantities Tij satisfy

a set of linear algebraic equations [1] which can be easily solved by MACSYMA.

. . . .. . : , ..-i ,.. - . , . , : _ - . . .... .. . . . . •. i . -
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1 2
* Figure 3

G

Q (L)

4 0 L

Figure 4
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2T21 (L) - (2/G) + (L/G2) > 2/G (12)

'T21 is linearly related to L and can be reduced by decreasing L. From

* equations (11) and (12) we conclude that reducing T0 will reduce N12 (T) and

T21 by decreasing L.

V. a)NCLUSIONS

The same remarks made in [4] are also valid here.

O

S
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